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Measurements of the anisotropy of the cosmic microwave
background (CMB) is getting better and better

� Observable: CMB angular power spectrum
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Cl parameterizes uctuation for � � �=l

Observed Cl is well explained by the scale-invariant adia-
batic primordial uctuation

) Evidence of ination?

With an exotic scalar �eld �, simple inationary scenario
may be changed

� Fluctuation of the scalar �eld may signi�cantly af-
fect the CMB anisotropy



In cosmology based on SUSY, there exist scalar �elds
which may once dominate the universe

� A�eck-Dine �eld for baryogenesis / leptogenesis
[A�eck & Dine]

� Cosmological moduli �elds
[Coughlan et al.; TM, Yamaguchi & Yanagida]

� Right-handed sneutrino (for leptogenesis)
[Murayama & Yanagida; Hamaguchi, Murayama & Yanagida]

Cosmological scenario with �:
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1. In the early universe, � 6= 0

) When H >
�m�, � � �init

2. When H � m�, � starts to oscillate

) �� takes over �r at some point

3. When H � ��, � decays and reheats the universe

Scalar �eld � behaves as:

� Vacuum energy, if H >
�m�

� Non-relativistic matter, if H <
�m�
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� CMB we observe today originates to �

� CMB anisotropy is a�ected if � has a uctuation

Origin of the primordial uctuation of �: Ination

During ination, (light) scalar �eld is uctuated
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��init: New source of cosmic density perturbations

) Density perturbation in � is converted to that of
radiation when � decays
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Density perturbation from ��init is characterized by the
\entropy"

1. If baryon is also from �, the baryon-to-photon ratio
does not uctuate

)
�(nb=n)

(nb=n)
= 0

2. If baryon is from somewhere else, the baryon-to-
photon ratio has uctuation
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) Adiabatic and isocurvature perturbations are gener-
ated with cross-correlation

In both cases, there are two uncorrelated sources of uc-
tuations

� 	inf: From uctuation of the inaton �eld �

� S�: From uctuation of �

Total angular power spectrum: Cl = C
(inf)
l + C

(��)
l
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� Notice: h	infS�i / h��init��initi = 0



Case 1: Purely adiabatic case
[Enqvist & Sloth; Lyth & Wands; TM & Takahashi]

Baryon and CDM are somehow produced from the
decay products of �

In this case, C
(inf)
l and C

(��)
l are both from \adiabatic"

uctuations
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) C
(inf)
l and C

(��)
l have the same shape, if 	inf and S�

have the same scale-dependence

) CMB anisotropy may be dominantly from ��init, if
�init is small

Importantly, scale dependences of 	inf and S� are in gen-
eral di�erent

In many models, ��init has milder scale dependence
than 	inf

) Constraints on inaton potential can be relaxed if
�init is small



Case 2: With extra perturbations in baryon
[TM & Takahashi]

Baryon has some di�erent sources

CMB angular power spectrum with correlated mixture of
adiabatic and isocurvature uctuations
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Total CMB angular power spectrum

Cl = C
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� C
(inf)
l : Adiabatic

� C
(��)
l : Adiabatic + Isocurvature (with correlation)



With correlated entropy in baryonic sector

To parameterize the relative size of 	inf and S�:
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Rb 6= 0: The acoustic peaks are enhanced relative to C10
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� MAP experiment may observe the distortion

� Too large Rb is already excluded by the present data

�2 analysis with the current data ) Rb
<
� 5



Summary

Today, I discussed e�ects of late-time entropy production
on the cosmic density perturbations

� The CMB we observe today originates to a scalar
�eld

� The scalar �eld may acquire sizable amplitude uc-
tuation during ination

Motivations

� A�eck-Dine baryogenesis

� Cosmological moduli �elds

� Right-handed sneutrino for leptogenesis

� � � �

Then, we saw

� Constraints on ination models may change

) It is easier to have a scale-invariant spectrum

� There can exist correlated mixture of adiabatic and
isocurvature uctuations

) MAP experiment may observe a distortion of
the spectrum from the adiabatic one



Shape of the angular power spectrum depends on which
component has the correlated entropy
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Total angular power spectrum:
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Case with correlated entropy in the baryonic sector

) Acoustic peaks are enhanced relative to the SW tail

Case with correlated entropy in the CDM sector

) Acoustic peaks are suppressed relative to the SW
tail



Case with the correlated entropy in the CDM sector
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To parameterize the relative size of 	inf and S�:
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Constraint on the Rc-parameter

� Rc
>
� 2 is excluded



�2 as a function of Rb
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64 d.o.f. ) �2 < 84 for 95 % C.L.



With uncorrelated and uncorrelated isocurvature modes

Cl = C
(adi)
l + C
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l

� Correlated baryonic isocurvature uctuation pushes
up the acoustic peaks

� Uncorrelated isocurvature mode suppresses heights
of the acoustic peaks

) Cl may be consistent with the present observations
without C

(adi)
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Then, we obtain constraint on the Rb vs. �b plane
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