Cosmic Microwave Background from Late-Decaying Scalar Condensations

Takeo Moroi (Tohoku)

Refs.: Moroi & Takahashi, PL B522 ('01) 215 [hep-ph/0110096] Moroi & Takahashi, hep-ph/0206026 Measurements of the anisotropy of the cosmic microwave background (CMB) is getting better and better

• Observable: CMB angular power spectrum

$$\langle \Delta T(\vec{x}, \vec{\gamma}) \Delta T(\vec{x}, \vec{\gamma}') \rangle_{\vec{x}} = \frac{1}{4\pi} \sum_{l} (2l+1) C_l P_l(\vec{\gamma} \cdot \vec{\gamma}')$$

 C_l parameterizes fluctuation for $heta \sim \pi/l$

Observed C_l is well explained by the scale-invariant adiabatic primordial fluctuation

 \Rightarrow Evidence of inflation?

With an exotic scalar field $\phi,$ simple inflationary scenario may be changed

• Fluctuation of the scalar field may significantly affect the CMB anisotropy In cosmology based on SUSY, there exist scalar fields which may once dominate the universe

- Affleck-Dine field for baryogenesis / leptogenesis [Affleck & Dine]
- Cosmological moduli fields [Coughlan et al.; TM, Yamaguchi & Yanagida]
- Right-handed sneutrino (for leptogenesis)
 [Murayama & Yanagida; Hamaguchi, Murayama & Yanagida]

Cosmological scenario with ϕ :

1. In the early universe, $\phi \neq 0$

 \Rightarrow When $H \gtrsim m_{\phi}$, $\phi \sim \phi_{\text{init}}$

2. When $H \sim m_{\phi}$, ϕ starts to oscillate

 $\Rightarrow \rho_{\phi}$ takes over ρ_r at some point

3. When $H \sim \Gamma_{\phi}$, ϕ decays and reheats the universe

Scalar field ϕ behaves as:

- Vacuum energy, if $H \gtrsim m_{\phi}$
- Non-relativistic matter, if $H \lesssim m_{\phi}$

- CMB we observe today originates to ϕ
- CMB anisotropy is affected if ϕ has a fluctuation

Origin of the primordial fluctuation of ϕ : Inflation

During inflation, (light) scalar field is fluctuated

$$\delta\phi_{\text{init}} \simeq \frac{H_{\text{inf}}}{2\pi} \quad \Rightarrow \quad S_{\phi} \equiv \left[\frac{\delta\rho_{\phi}}{\rho_{\phi}}\right]_{\text{init}} = \frac{2\delta\phi_{\text{init}}}{\phi_{\text{init}}}$$

 $\delta\phi_{\rm init}$: New source of cosmic density perturbations

 \Rightarrow Density perturbation in ϕ is converted to that of radiation when ϕ decays

$$\left[\frac{\delta\rho_{\gamma}}{\rho_{\gamma}}\right]_{\mathsf{RD2}} = \frac{4}{9}S_{\phi}, \qquad \cdots$$

Density perturbation from $\delta\phi_{\rm init}$ is characterized by the ''entropy''

1. If baryon is also from ϕ , the baryon-to-photon ratio does not fluctuate

$$\Rightarrow \quad \frac{\delta(n_b/n_\gamma)}{(n_b/n_\gamma)} = 0$$

2. If baryon is from somewhere else, the baryon-tophoton ratio has fluctuation

$$\Rightarrow \quad \frac{\delta(n_b/n_\gamma)}{(n_b/n_\gamma)} = -\frac{9}{4} \frac{\delta\rho_\gamma}{\rho_\gamma}$$

 \Rightarrow Adiabatic and isocurvature perturbations are generated with cross-correlation

In both cases, there are two <u>uncorrelated</u> sources of fluctuations

- $\Psi_{\rm inf}$: From fluctuation of the inflaton field χ
- S_{ϕ} : From fluctuation of ϕ

Total angular power spectrum: $C_l = C_l^{(inf)} + C_l^{(\delta\phi)}$

- $C_l^{(\mathrm{inf})} \sim O(\Psi_{\mathrm{inf}}^2)$
- $C_l^{(\delta\phi)} \sim O(S_\phi^2)$
- Notice: $\langle \Psi_{\inf}S_{\phi}\rangle\propto \langle\delta\chi_{\inf}\delta\phi_{\inf}\rangle=0$

Case 1: Purely adiabatic case [Enqvist & Sloth; Lyth & Wands; TM & Takahashi]

Baryon and CDM are somehow produced from the decay products of ϕ

In this case, $C_l^{(\inf)}$ and $C_l^{(\delta\phi)}$ are both from "adiabatic" fluctuations

$$\Psi_{\inf}(k) = \left[\frac{H_{\inf}\delta\chi_{\text{init}}}{\dot{\chi}}\right]_{k=aH} \simeq \left[\frac{H_{\inf}}{2\pi}\frac{3H_{\inf}^2}{V_{\inf}'}\right]_{k=aH}$$
$$S_{\phi}(k) = \frac{2\delta\phi_{\text{init}}(k)}{\phi_{\text{init}}} \quad \text{with} \quad \delta\phi_{\text{init}}(k) \simeq \left[\frac{H_{\inf}}{2\pi}\right]_{k=aH}$$

- $\Rightarrow~C_l^{(\inf)}$ and $C_l^{(\delta\phi)}$ have the same shape, if Ψ_{\inf} and S_ϕ have the same scale-dependence
- \Rightarrow CMB anisotropy may be dominantly from $\delta\phi_{\rm init},$ if $\phi_{\rm init}$ is small

Importantly, scale dependences of Ψ_{\inf} and S_{ϕ} are in general different

In many models, $\delta\phi_{\rm init}$ has milder scale dependence than $\Psi_{\rm inf}$

 \Rightarrow Constraints on inflaton potential can be relaxed if $\phi_{\rm init}$ is small

Case 2: With extra perturbations in baryon [TM & Takahashi]

Baryon has some different sources

CMB angular power spectrum with correlated mixture of adiabatic and isocurvature fluctuations

Total CMB angular power spectrum

 $C_l = C_l^{(\inf)} + C_l^{(\delta\phi)}$

- $C_l^{(inf)}$: Adiabatic
- $C_l^{(\delta\phi)}$: Adiabatic + Isocurvature (with correlation)

With correlated entropy in baryonic sector

To parameterize the relative size of Ψ_{inf} and S_{ϕ} :

$$R_b \equiv \left[\frac{S_\phi}{\Psi_{\inf}}\right]_{\text{RD2}}$$

 $R_b \neq 0$: The acoustic peaks are enhanced relative to C_{10}

- MAP experiment may observe the distortion
- Too large R_b is already excluded by the present data $\chi^2 \text{ analysis with the current data} \Rightarrow R_b \mathop{}_{\textstyle \sim}^{\textstyle <} 5$

Summary

Today, I discussed effects of late-time entropy production on the cosmic density perturbations

- The CMB we observe today originates to a scalar field
- The scalar field may acquire sizable amplitude fluctuation during inflation

Motivations

- Affleck-Dine baryogenesis
- Cosmological moduli fields
- Right-handed sneutrino for leptogenesis
- • •

Then, we saw

- Constraints on inflation models may change
 - \Rightarrow It is easier to have a scale-invariant spectrum
- There can exist correlated mixture of adiabatic and isocurvature fluctuations
 - ⇒ MAP experiment may observe a distortion of the spectrum from the adiabatic one

Shape of the angular power spectrum depends on which component has the correlated entropy

Total angular power spectrum:

 $C_l = C_l^{(\inf)} + C_l^{(\delta\phi)}$

Case with correlated entropy in the baryonic sector

 \Rightarrow Acoustic peaks are <u>enhanced</u> relative to the SW tail

Case with correlated entropy in the CDM sector

 \Rightarrow Acoustic peaks are suppressed relative to the SW tail

Case with the correlated entropy in the CDM sector

$$\frac{\delta(n_{\rm CDM}/n_{\gamma})}{(n_{\rm CDM}/n_{\gamma})} = -\frac{9}{4}\frac{\delta\rho_{\gamma}}{\rho_{\gamma}}$$

To parameterize the relative size of Ψ_{\inf} and S_{ϕ} :

$$R_c \equiv \left[\frac{S_\phi}{\Psi_{\inf}}\right]_{\mathsf{RD2}}$$

Constraint on the R_c -parameter

• $R_c \gtrsim 2$ is excluded

χ^2 as a function of R_b

 χ^2 as a function of R_c

64 d.o.f. $\Rightarrow \chi^2 < 84$ for 95 % C.L.

With uncorrelated and uncorrelated isocurvature modes

 $C_l = C_l^{(\mathsf{adi})} + C_l^{(\delta\phi)} + C_l^{(\mathsf{iso})}$

- Correlated baryonic isocurvature fluctuation pushes up the acoustic peaks
- Uncorrelated isocurvature mode suppresses heights of the acoustic peaks
- \Rightarrow C_l may be consistent with the present observations without $C_l^{\rm (adi)}$

Define

$$R_b \equiv \left[S_{b\gamma}^{(\delta\phi)} / \Psi^{(\inf)} \right]_{\text{RD2}}, \quad \alpha_b = \left[S_{b\gamma}^{(\text{uncorr})} / \Psi^{(\inf)} \right]_{\text{RD2}}$$

Then, we obtain constraint on the R_b vs. α_b plane

