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Measurements of the anisotropy of the cosmic microwave
background (CMB) is getting better and better

e Observable: CMB angular power spectrum
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C; parameterizes fluctuation for 6§ ~ 7/l

Observed C) is well explained by the scale-invariant adia-
batic primordial fluctuation

= Evidence of inflation?

With an exotic scalar field ¢, simple inflationary scenario
may be changed

e Fluctuation of the scalar field may significantly af-
fect the CMB anisotropy



In cosmology based on SUSY, there exist scalar fields
which may once dominate the universe

o Affleck-Dine field for baryogenesis / leptogenesis
[Affleck & Dine]

e Cosmological moduli fields
[Coughlan et al.; TM, Yamaguchi & Yanagida]

e Right-handed sneutrino (for leptogenesis)
[Murayama & Yanagida; Hamaguchi, Murayama & Yanagida]

Cosmological scenario with ¢:

AV Vv

1. In the early universe, ¢ # 0
= When HZ mg, ¢~ Pinit

2. When H ~ mgy, ¢ starts to oscillate
= py takes over p, at some point

3. When H ~ Ty, ¢ decays and reheats the universe
Scalar field ¢ behaves as:

e Vacuum energy, if HZ myg

e Non-relativistic matter, if HSmy
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e CMB we observe today originates to ¢

e CMB anisotropy is affected if ¢ has a fluctuation

Origin of the primordial fluctuation of ¢: Inflation

During inflation, (light) scalar field is fluctuated
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dpinit: New source of cosmic density perturbations

= Density perturbation in ¢ is converted to that of
radiation when ¢ decays



Density perturbation from d¢;.: iS characterized by the
“entropy”

1. If baryon is also from ¢, the baryon-to-photon ratio
does not fluctuate
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2. If baryon is from somewhere else, the baryon-to-
photon ratio has fluctuation

0(ny/n) _ ~9dpy
(p/114) 4 py

= Adiabatic and isocurvature perturbations are gener-
ated with cross-correlation

In both cases, there are two uncorrelated sources of fluc-
tuations

e U, . From fluctuation of the inflaton field x

e S4: From fluctuation of ¢
Total angular power spectrum: ¢, = "™ 4 ¢!*?
o "~ O(B2)

o C°” ~0O(S3)
e Notice: <\IfinfS¢> X <5Xinit5¢init> =0



Case 1: Purely adiabatic case
[Enqgvist & Sloth; Lyth & Wands; TM & Takahashi]

Baryon and CDM are somehow produced from the
decay products of ¢

In this case, Cl(i"f) and Cl(5¢) are both from "adiabatic”
fluctuations
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= Cl(i”f) and Cf‘w have the same shape, if U,y and S,
have the same scale-dependence

= CMB anisotropy may be dominantly from ¢, if
Oinit 1S SMall

Importantly, scale dependences of ¥;, and S, are in gen-
eral different

In many models, d¢ini: has milder scale dependence
than W,

= Constraints on inflaton potential can be relaxed if
Oinit 1S SMall



Case 2: With extra perturbations in baryon
[TM & Takahashi]

Baryon has some different sources

CMB angular power spectrum with correlated mixture of
adiabatic and isocurvature fluctuations
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Total CMB angular power spectrum

C) = Cl(inf) + Cl(5¢)

e C'": Adiabatic

° Cz(&b): Adiabatic 4+ Isocurvature (with correlation)



With correlated entropy in baryonic sector

‘To parameterize the relative size of Wi and Sy:
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Ry # 0: The acoustic peaks are enhanced relative to Cy
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e MAP experiment may observe the distortion
e ToO large Ry is already excluded by the present data

yv2 analysis with the current data = R, S5



Summary

Today, I discussed effects of late-time entropy production
on the cosmic density perturbations

e The CMB we observe today originates to a scalar
field

e T he scalar field may acquire sizable amplitude fluc-
tuation during inflation

Motivations

e Affleck-Dine baryogenesis
e Cosmological moduli fields
e Right-handed sneutrino for leptogenesis

Then, we saw

e Constraints on inflation models may change

= It is easier to have a scale-invariant spectrum

e [ here can exist correlated mixture of adiabatic and
isocurvature fluctuations

= MAP experiment may observe a distortion of
the spectrum from the adiabatic one



Shape of the angular power spectrum depends on which
component has the correlated entropy
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Total angular power spectrum:

Cl _ Cl(inf) 4 Cl(5¢)

Case with correlated entropy in the baryonic sector

= Acoustic peaks are enhanced relative to the SW tail

Case with correlated entropy in the CDM sector

= Acoustic peaks are suppressed relative to the SW
tail




Case with the correlated entropy in the CDM sector
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To parameterize the relative size of Wi and Sy:
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Constraint on the R.-parameter

e R.2 2 is excluded



x? as a function of R,
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64 d.o.f. = x2 <84 for 95 % C.L.



With uncorrelated and uncorrelated isocurvature modes

Cl _ Cl(adi) 4 Cl(&b) + Cl(iso)

e Correlated baryonic isocurvature fluctuation pushes
up the acoustic peaks

e Uncorrelated isocurvature mode suppresses heights
of the acoustic peaks

= (] may be consistent with the present observations
without C (adi)

Define

Ry = [ (5q§)/\1/(mf)} ap = |: (uncorr)/lll(mf)}

RD2 RD2

Then, we obtain constraint on the R, vs. o plane
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